Paramétrer configuration.h

Voici les éléments à modifier/ adapter dans l’onglet config.h de marlin:

Le principe est toujours le même: soit on modifie les valeurs numériques / options etc, soit on valide dé-valide une ligne de commande en enlevant  ou mettant un double slash devant : // qui met en commentaire tout ce qui suit.

normalement pour chaque option, il y a tout un blabla qui rend la chose relativement compréhensible

en bleu les options de ma machine.

Taux de transfert:

// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200

Choix interface :

Dans la ligne define motherboard, on met le code de sa carte

//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) « »
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 3  = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Bed, Fan)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 4  = Duemilanove w/ ATMega328P pin assignment
// 5  = Gen6
// 51 = Gen6 deluxe
// 6  = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 7  = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 8  = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 9  = Gen3+
// 70 = Megatronics
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301 = Rambo

#define MOTHERBOARD 34

Type d’alimentation:

//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

#define POWER_SUPPLY 1

pour une ATX ( même si c’est autre chose, du moment que l’on utililse pas le brochage Xbox de la ramps )

//========================Thermal Settings ==========================

Réglages capteurs de température:

//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor – best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor – ATC Semitec 204GT-2 (4.7k pullup)
// 3 is mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor – ATC Semitec 104GT-2 (Used in ParCan) (4.7k pullup)
// 6 is 100k EPCOS – Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
//    1k ohm pullup tables – This is not normal, you would have to have changed out your 4.7k for 1k
//                          (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor – EPCOS (1k pullup)
// 52 is 200k thermistor – ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor – ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)

#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0

J’ai un epcos 100k ( // 1 ) sur le senseur 0 ( extrudeuse), rien sur le 1 et 2 ( // 0 ) et aussi une epcos 100k sur le bed ( // 1 )

Autres réglages thermiques:

pas modifiés: données d’hystérésis, de temp mini et maxi de sécurité ( IMPORTANT ) et des généralités de PID.

// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10    // (seconds)
#define TEMP_HYSTERESIS 3       // (degC) range of +/- temperatures considered « close » to the target one
#define TEMP_WINDOW     1       // (degC) Window around target to start the recidency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 150

// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of

// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
#ifdef PIDTEMP
  //#define PID_DEBUG // Sends debug data to the serial port.
  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
                                  // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
  #define PID_INTEGRAL_DRIVE_MAX 255  //limit for the integral term
  #define K1 0.95 //smoothing factor withing the PID
  #define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine

PID hot end:

J’ai mis de valeurs pour ma HE qui marchent bien.  ( base  Jhead MKIV )

// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it

// Titi-Head V1 😉
    #define  DEFAULT_Kp 34.19
    #define  DEFAULT_Ki 2.47  
    #define  DEFAULT_Kd 118.19
// Ultimaker
//#define  DEFAULT_Kp 22.2
//#define  DEFAULT_Ki 1.08  
//#define  DEFAULT_Kd 114  

// Makergear
//    #define  DEFAULT_Kp 7.0
//    #define  DEFAULT_Ki 0.1  
//    #define  DEFAULT_Kd 12  

// Mendel Parts V9 on 12V    
//    #define  DEFAULT_Kp 63.0
//    #define  DEFAULT_Ki 2.25
//    #define  DEFAULT_Kd 440
#endif // PIDTEMP

PID bed:

Pas changé les options…

// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED.  If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// uncomment this to enable PID on the bed.   It uses the same ferquency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don’t understand the issues involved, you proabaly
// shouldn’t use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED

// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn’t use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model – kp=.39 Tp=405 Tdead=66, Tc set to 79.2, argressive factor of .15 (vs .1, 1, 10)
    #define  DEFAULT_bedKp 10.00
    #define  DEFAULT_bedKi .023
    #define  DEFAULT_bedKd 305.4

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//    #define  DEFAULT_bedKp 97.1
//    #define  DEFAULT_bedKi 1.41
//    #define  DEFAULT_bedKd 1675.16

// FIND YOUR OWN: « M303 E-1 C8 S90 » to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

Thermique extrudeuse:

des éléménts de sécurité thermique / mouvements  sur l’extrudeuse

//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.

#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

le paramétre important est la mintemp à 170°, qui fait que l’extrudeuse ne démarre pas avant cette valeur. Cela permet d’éviter d’extruder à froid et de faire du copeau avec la pinched weel

//======================== Mechanical Settings =======================

End stops:

// corse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

  // fine Enstop settings: Individual Pullups. will be ignord if ENDSTOPPULLUPS is defined


// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.

définition de la position des end stops ( seulement en Max pour moi ) et de leur sens logique: false pour NF

Moteurs PAP:

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

enable de tout les moteurs utilisés

// Disables axis when it’s not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders

tout les axes sont utilisés donc disable = false

#define INVERT_X_DIR true    // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR true    // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true     // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR true   // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false    // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false   // for direct drive extruder v9 set to true, for geared extruder set to false

définition des sens de rotation: tout en « true » pour moi

Géométrie imprimante:

// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1

mes home switchs sont tous situés en max des axes ( 1 )
#define min_software_endstops true //If true, axis won’t move to coordinates less than HOME_POS.
#define max_software_endstops true  //If true, axis won’t move to coordinates greater than the defined lengths below.
// Travel limits after homing
#define X_MAX_POS 195
#define X_MIN_POS 0
#define Y_MAX_POS 200
#define Y_MIN_POS 0
#define Z_MAX_POS 158.65
#define Z_MIN_POS 0

limites des axes X de 0 à 195, Y de 0 à 200, et Z de 0 à 158.65

La valeur Z est importante, elle doit être parfaitement mesurée, et est aussi reportée dans repetier


défini les courses  ( valable pour 0 en fin de course ou au centre ( valeurs en + / – )

// The position of the homing switches
//#define MANUAL_HOME_POSITIONS  // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)

//Manual homing switch locations:

Pas concerné…


#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {30*60, 30*60, 4*60, 0}  // set the homing speeds (mm/min)
Vitesse de retour sur les butées home exprimé en mm/min( ? )  dans mon cas 30 mm/s sur XY, et 4mm/s sur Z . E sans home.  il y a un *60 pour mettre en mm/min
// default settings

#define DEFAULT_AXIS_STEPS_PER_UNIT   {3200/40,3200/40,3200/1.25,12800/22.9041}  // default steps per unit for ultimaker

defini la vitesse en step par mm:

3200 steps / 40 mm sur X et Y  : 200ppt * 16 ( 16 microstep ) / poulie 8 dents courroie T5

3200 steps / 1.25 mm sur z  : 200ppt * 16 ( 16 microstep ) / tige filetée M8 pas de 1.25mm

12800 steps / 22.9041 sur E: 200ppt * 16 ( 16 microstep ) * reduction 4 / 22.9041 mm de fil avalé pour un tour de pinched weel ( L fil pour 20 tours / 20 )
#define DEFAULT_MAX_FEEDRATE          {200, 200, 4, 30}    // (mm/sec)

Vitesses maxi sur les axes
#define DEFAULT_MAX_ACCELERATION      {4000,4000,150,5000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.

#define DEFAULT_ACCELERATION          4000    // X, Y, Z and E max acceleration in mm/s^2 for printing moves // X, Y, Z and E max acceleration in mm/s^2 for r retracts

accelration maxi sur les axes: valeurs reprises du marlin de la mendel 90 Nophead ( mais qui tourne sous Melzi )

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00}  // (in mm) for each extruder, offset of the hotend on the Y axis


// The speed change that does not require acceleration (i.e. the software might assume it can be done instanteneously)
#define DEFAULT_XYJERK                10.0    // (mm/sec)
#define DEFAULT_ZJERK                 0     // (mm/sec)
#define DEFAULT_EJERK                 10.0    // (mm/sec)

Vitesses seuils  » start-stop  » en dessous desquelles il y a mouvement direct sans accélération

//========================  Additional Features =======================

3 lignes seulement intéressantes:

//LCD and SD support
//#define ULTRA_LCD  //general lcd support, also 16×2
//#define DOGLCD    // Support for SPI LCD 128×64 (Controller ST7565R graphic Display Family)
#define SDSUPPORT // Enable SD Card Support in Hardware Console

prise en compte de la SD carte ( sur le LCD G3D panel )

//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL  //the ultipanel as on thingiverse

// The RepRapDiscount Smart Controller (white PCB)

// The GADGETS3D G3D LCD/SD Controller (blue PCB)
#define G3D_PANEL

Choix du type d’écran: gadget 3D dan smon cas

// Preheat Constants
#define PLA_PREHEAT_FAN_SPEED 255        // Insert Value between 0 and 255

#define ABS_PREHEAT_FAN_SPEED 255        // Insert Value between 0 and 255

Choix des températures de préchauffe bed, extru et vitesse ventilo par defaut en dur dans la carte ( mode autonome )